๐Ÿคพ
MLStudy
  • README
  • Linux
    • command
    • Basic_commands
    • Advanced_commands
    • Linuxvirtual_machine_operate
    • virtual machine
  • Python
    • Deploy_Issue
    • Model_Analysis
    • Model_concept
    • Model_Grammar
    • Python_print_format
    • Model_ComFuc
    • Deep_learning_know
  • Theoretical knowledge
    • MLE_MAP_Bayesian
    • TV_denoise
  • Research
    • Writing
    • How to read
  • To_be_classified
    • tqdm
    • fast_visit_github
    • windows_issue
    • Zotero
    • data_struct
    • dataset
      • chapter_1
      • chapter_2
      • chapter_3
      • chapter_4
      • chapter_5
      • chapter_6
      • chapter_7
Powered by GitBook
On this page
  1. Theoretical knowledge

TV_denoise

PreviousMLE_MAP_BayesianNextResearch

Last updated 2 years ago

ๆœ€่ฟ‘ๆœฌๆฅๅœจ็ ”็ฉถTVๅŽปๅ™ชๆ•ˆๆžœ็š„ๆ”น่ฟ›๏ผŒไฝ†ๆ˜ฏ็”ฑไบŽ่‡ชๅทฑไน‹ๅ‰ๅฏนไบŽTVๅŽปๅ™ชๆ–นๆณ•ๅญฆไน ๅคชๆต…๏ผŒๆ‰€ไปฅ็†่งฃๅ‡บไบ†ๅพˆๅคง็š„้—ฎ้ข˜๏ผŒ่ฟ™้‡Œๆƒณๆ€ป็ป“ไธ€ไธ‹๏ผš ้ฆ–ๅ…ˆๆ˜ฏTVๅŽปๅ™ช็š„ๅŽŸ็†๏ผŒๆˆ‘่‡ชๅทฑ่ง‰ๅพ—ๆฏ”่พƒๅฅฝ็†่งฃ็š„่ฟ™็ฏ‡ๆ–‡็ซ ๆ˜ฏ

ๆฌงๆ‹‰-ๆ‹‰ๆ ผๆœ—ๆ—ฅ(Euler-Lagrange)ๆ–น็จ‹๏ผš

โˆ‚Lโˆ‚fโˆ’ddx(โˆ‚Ldfโ€ฒ)=0\dfrac{\partial L}{\partial f}-\dfrac{\mathrm{d}}{\mathrm{d}x}(\dfrac{\partial L}{\mathrm{d}f'})=0โˆ‚fโˆ‚Lโ€‹โˆ’dxdโ€‹(dfโ€ฒโˆ‚Lโ€‹)=0

ๅฝ“$f(x)$ๆปก่ถณๆฌงๆ‹‰-ๆ‹‰ๆ ผๆœ—ๆ—ฅๆ–น็จ‹ๆ—ถ๏ผŒๆณ›ๅ‡ฝๅ–ๆžๅ€ผใ€‚

ๅพ—ๅˆฐ้ซ˜็ปดๅ‡ฝๆ•ฐ็š„ๆฌงๆ‹‰-ๆ‹‰ๆ ผๆœ—ๆ—ฅๆ–น็จ‹ๅผ๏ผš

โˆ‚Lโˆ‚fโˆ’ddx(โˆ‚Ldfx)โˆ’ddy(โˆ‚Lโˆ‚fy)=0\dfrac{\partial L}{\partial f}-\dfrac{\mathrm{d}}{\mathrm{d}x}(\dfrac{\partial L}{\mathrm{d}f_x})-\dfrac{{\mathrm{d}}}{{\mathrm{d}y}}(\dfrac{{\partial L}}{{\partial}f_y})=0โˆ‚fโˆ‚Lโ€‹โˆ’dxdโ€‹(dfxโ€‹โˆ‚Lโ€‹)โˆ’dydโ€‹(โˆ‚fyโ€‹โˆ‚Lโ€‹)=0

TVๅŽปๅ™ช้€šๅธธไฝฟ็”จ็š„ๆ˜ฏL1่Œƒๆ•ฐใ€‚


Rudin ็ญ‰ไบบ๏ผˆRudin1990๏ผ‰่ง‚ๅฏŸๅˆฐ๏ผŒๅ—ๅ™ชๅฃฐๆฑกๆŸ“็š„ๅ›พๅƒ็š„ๆ€ปๅ˜ๅˆ†ๆฏ”ๆ— ๅ™ชๅ›พๅƒ็š„ๆ€ปๅ˜ๅˆ†ๆ˜Žๆ˜พ็š„ๅคงใ€‚ๆ€ปๅ˜ๅˆ†ๅฎšไน‰ไธบๆขฏๅบฆๅน…ๅ€ผ็š„็งฏๅˆ†๏ผŒๅฎšไน‰ๅผไธบ

JT0(u)=โˆฌโˆฃโˆ‡uโˆฃdxdy=โˆฌux2+uy2dxdyJ_{T_0}(u)=\iint|\nabla u|dx dy=\iint\sqrt{u_x^2+u_y^2}dx dyJT0โ€‹โ€‹(u)=โˆฌโˆฃโˆ‡uโˆฃdxdy=โˆฌux2โ€‹+uy2โ€‹โ€‹dxdy

ๅ…ถไธญ๏ผŒ$u_{x}=\frac{\partial u}{\partial x},u_{y}=\frac{{\partial u}}{{\partial y}}$้™ๅˆถๆ€ปๅ˜ๅˆ†ๅฐฑๆ˜ฏ้™ๅˆถๅ™ชๅฃฐ๏ผŒ

ๅœจ่งฃๅ†ณ้—ฎ้ข˜็š„่ฟ‡็จ‹ไธญ๏ผŒๆˆ‘ไปฌๅŒๆ—ถๅธŒๆœ›ๅŽปๅ™ชๅŽ็š„ๅ›พๅƒไธŽๅŽŸๅ›พๅƒ็š„ๅทฎ่ทไธไผš็‰นๅˆซๅคง๏ผˆๅ›พๅƒไธๅคฑ็œŸ๏ผ‰๏ผŒๅ› ๆญค๏ผŒๅœจๆฑ‚่งฃ่ฟ™ไธชๆขฏๅบฆๆžๅฐๅ€ผๆ—ถ๏ผŒๅŠ ไบ†ไธ€ไธชไฟ็œŸ้กน๏ผŒ็ป“ๆžœๅ˜ๆˆ๏ผš

ๅŽไธ€้กนไธบๆณ›ๅ‡ฝ็š„ไฟ็œŸ้กน๏ผŒฮปๆ˜ฏๆพๅผ›ๅ› ๅญ๏ผŒ่ฐƒ่Š‚ไฟ็œŸ้กนไธŽๆขฏๅบฆ็š„ๅ ๆฏ”,ๆณ›ๅ‡ฝ็š„ๆ ธ

ๆณ›ๅ‡ฝๅ–ๆžๅ€ผ็š„ๅฟ…่ฆๆกไปถไธบๆปก่ถณๆฌงๆ‹‰ๆ–น็จ‹

ๅ…ถไธญ

ๆฌงๆ‹‰ๆ–น็จ‹ๅฏๅŒ–็ฎ€ไธบ


ๅ…ณไบŽTV็š„ไฝœ็”จๆˆ‘ไธป่ฆๆ˜ฏไปŽ่ฟ™็ฏ‡ๆ–‡็ซ ็†่งฃ็š„

ๅœจๅ›พๅƒ่พน็ผ˜ๅค„๏ผŒ|โ–ฝu|่ถŠๅคง๏ผŒ1/|โ–ฝu|่ถŠๅฐ๏ผŒu่ถŠ่ถ‹่ฟ‘ไบŽu0๏ผŒไฟ็•™ไบ†่พน็ผ˜๏ผ›ๅœจๅนณๆป‘ๅŒบๅŸŸ๏ผŒ|โ–ฝu|่ถŠๅคง๏ผŒๅ› ๆญคๅœจๅ›พๅƒๅนณๆป‘ๅŒบๅŸŸ่ƒฝ่พƒๅฅฝๅœฐๅŽปๅ™ชไบ†ใ€‚


ๅฆ‚ไฝ•็†่งฃTVๅŽปๅ™ชไบง็”Ÿ็š„้˜ถๆขฏๆ•ˆๅบ”ๅ‘ข๏ผŸ TV็š„L1่Œƒๆ•ฐ็š„ไฝœ็”จไธป่ฆๆ˜ฏ็จ€็–

L1่Œƒๆ•ฐๆ˜ฏๆˆ‘ไปฌ็ปๅธธ่งๅˆฐ็š„ไธ€็ง่Œƒๆ•ฐ๏ผŒๅฎƒ็š„ๅฎšไน‰ๅฆ‚ไธ‹๏ผš

่กจ็คบๅ‘้‡xไธญ้ž้›ถๅ…ƒ็ด ็š„็ปๅฏนๅ€ผไน‹ๅ’Œใ€‚

L1่Œƒๆ•ฐๆœ‰ๅพˆๅคš็š„ๅๅญ—๏ผŒไพ‹ๅฆ‚ๆˆ‘ไปฌ็†Ÿๆ‚‰็š„ๆ›ผๅ“ˆ้กฟ่ท็ฆปใ€ๆœ€ๅฐ็ปๅฏน่ฏฏๅทฎ็ญ‰ใ€‚ไฝฟ็”จL1่Œƒๆ•ฐๅฏไปฅๅบฆ้‡ไธคไธชๅ‘้‡้—ด็š„ๅทฎๅผ‚๏ผŒๅฆ‚็ปๅฏน่ฏฏๅทฎๅ’Œ๏ผˆSum of Absolute Difference๏ผ‰๏ผš

ๅฏนไบŽL1่Œƒๆ•ฐ๏ผŒๅฎƒ็š„ไผ˜ๅŒ–้—ฎ้ข˜ๅฆ‚ไธ‹๏ผš

็”ฑไบŽL1่Œƒๆ•ฐ็š„ๅคฉ็„ถๆ€ง่ดจ๏ผŒๅฏนL1ไผ˜ๅŒ–็š„่งฃๆ˜ฏไธ€ไธช็จ€็–่งฃ๏ผŒๅ› ๆญคL1่Œƒๆ•ฐไนŸ่ขซๅซๅš็จ€็–่ง„ๅˆ™็ฎ—ๅญใ€‚้€š่ฟ‡L1ๅฏไปฅๅฎž็Žฐ็‰นๅพ็š„็จ€็–๏ผŒๅŽปๆމไธ€ไบ›ๆฒกๆœ‰ไฟกๆฏ็š„็‰นๅพ๏ผŒไพ‹ๅฆ‚ๅœจๅฏน็”จๆˆท็š„็”ตๅฝฑ็ˆฑๅฅฝๅšๅˆ†็ฑป็š„ๆ—ถๅ€™๏ผŒ็”จๆˆทๆœ‰100ไธช็‰นๅพ๏ผŒๅฏ่ƒฝๅชๆœ‰ๅๅ‡ ไธช็‰นๅพๆ˜ฏๅฏนๅˆ†็ฑปๆœ‰็”จ็š„๏ผŒๅคง้ƒจๅˆ†็‰นๅพๅฆ‚่บซ้ซ˜ไฝ“้‡็ญ‰ๅฏ่ƒฝ้ƒฝๆ˜ฏๆ— ็”จ็š„๏ผŒๅˆฉ็”จL1่Œƒๆ•ฐๅฐฑๅฏไปฅ่ฟ‡ๆปคๆމใ€‚


่ฟ™ๆ˜ฏ้€š่ฟ‡L1่Œƒๆ•ฐๆญฃๅˆ™้กนๅฎž็Žฐ็š„๏ผŒไธŽๅ…ถ่ฎฉๆฏไธ€็‚น็š„ๆขฏๅบฆ้ƒฝๆ˜ฏๅธธๆ•ฐๅ€ผ๏ผŒไธๅฆ‚ๅ‡บ็Žฐๅพˆๅคš0ๅ’Œไธ€ไธช้ž0ๅ€ผ๏ผŒ่ฟ™ไนŸๅฐฑๅ‡บ็Žฐไบ†้˜ถๆขฏๆ•ˆๅบ”๏ผŒไฝ†ๆ˜ฏไนŸไฟ่ฏไบ†่พน็ผ˜ใ€‚้€š่ฟ‡่ฐƒ่Š‚ฮป็š„ๅ€ผ๏ผŒๅฏไปฅๅœจไฟๆŠค่พน็ผ˜ๅ’Œๅนณๆป‘ไน‹้—ด่ฟ›่กŒ่ฐƒ่Š‚ใ€‚ฮป=0ๆ—ถ๏ผŒไผš่ฟ‡ไบŽๅนณๆป‘๏ผŒไธบไฝฟๅ€ผ่พพๅˆฐๆœ€ๅฐ๏ผŒๅฐฑ่ฎฉ|โ–ฝu|ๅฐฝๅฏ่ƒฝๅฐ๏ผŒๆ‰€ไปฅ่ฟญไปฃๅˆฐๆœ€ๅŽ๏ผŒๅฏ่ƒฝไผšๅพ—ๅˆฐ่พน็•Œ้ƒฝ่ขซๆจก็ณŠๆމไบ†็š„ๅ›พ็‰‡๏ผŒ

ไฝ†ๆ˜ฏๅฝ“ฮป่ถŠๅคง๏ผŒ่พน็•Œไฟ็•™่ถŠๅฅฝใ€‚

็ปง็ปญๅˆ†ๆžTV็ฎ—ๆณ•๏ผš ้€š่ฟ‡ๆขฏๅบฆไธ‹้™ๆณ•

ๅˆฉ็”จๆœ‰้™ๅทฎๅˆ†ๆฑ‚ๆ•ฐๅ€ผ่งฃ

ๅ…ถไธญไธบๅญฆไน ็އๆˆ–ๆญฅ้•ฟ๏ผŒๅฏนไบŒ็ปด็ฆปๆ•ฃไฟกๅท๏ผˆๅ›พๅƒ๏ผ‰๏ผŒๅทฎๅˆ†ๅฝขๅผๅฆ‚ไธ‹

J[u(x,y)]=โˆฌโˆฃโˆ‡u(x,y)โˆฃdxdy+ฮป2โˆฌ[u(x,y)โˆ’u0(x,y)]2dxdyโŠฅ\text{J}[u(x,y)]=\iint|\nabla u(x,y)|dxdy+\dfrac{\lambda}{2}\iint[u(x,y)-u_0(x,y)]^2dxdy^{\perp}J[u(x,y)]=โˆฌโˆฃโˆ‡u(x,y)โˆฃdxdy+2ฮปโ€‹โˆฌ[u(x,y)โˆ’u0โ€‹(x,y)]2dxdyโŠฅ
F=ฮป2(uโˆ’u0)2+โˆฃโˆ‡uโˆฃ=ฮป2(uโˆ’u0)2+(โˆ‚uโˆ‚x)2+(โˆ‚uโˆ‚y)<2\text{F}=\frac{\lambda}{2}(u-u_0)^2+|\nabla u|=\frac{\lambda}{2}{(u-u_0)}^2+\sqrt{(\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^2_<}F=2ฮปโ€‹(uโˆ’u0โ€‹)2+โˆฃโˆ‡uโˆฃ=2ฮปโ€‹(uโˆ’u0โ€‹)2+(โˆ‚xโˆ‚uโ€‹)2+(โˆ‚yโˆ‚uโ€‹)<2โ€‹โ€‹
โˆ‚โˆ‚uFโˆ’โˆ‚โˆ‚x(โˆ‚โˆ‚uxF)โˆ’โˆ‚โˆ‚y(โˆ‚โˆ‚uyF)=0\dfrac\partial{\partial u}F-\dfrac\partial{\partial x}\Bigl(\dfrac\partial{\partial u_x}F\Bigr)-\dfrac\partial{\partial y}\Biggl(\dfrac{\partial}{\partial u_y}F\Bigr)=0โˆ‚uโˆ‚โ€‹Fโˆ’โˆ‚xโˆ‚โ€‹(โˆ‚uxโ€‹โˆ‚โ€‹F)โˆ’โˆ‚yโˆ‚โ€‹(โˆ‚uyโ€‹โˆ‚โ€‹F)=0
โˆ‚โˆ‚uF=ฮป(uโˆ’u0)โˆ‚โˆ‚uxF=โˆ‚uโˆ‚xโˆฃโˆ‡uโˆฃโˆ‚โˆ‚uyF=โˆ‚uโˆ‚yโˆฃโˆ‡uโˆฃdivF=โˆ‡โ‹…F=โˆ‚โˆ‚xFx+โˆ‚โˆ‚yFy=โˆ‡โ‹…(โˆ‡uโˆฃโˆ‡uโˆฃ)\dfrac{\partial}{\partial u}F=\lambda(u-u_0) \\ \dfrac{\partial}{\partial u_x}F=\dfrac{\dfrac{\partial u}{\partial x}}{|\nabla u|} \\ \dfrac{\partial}{\partial u_y}F=\dfrac{\dfrac{\partial u}{\partial y}}{|\nabla u|} \\ divF=\nabla\cdot F=\dfrac{\partial}{\partial x}F_{x}+\dfrac{\partial}{{\partial y}}F_{y}={\nabla}\cdot(\dfrac{\nabla u}{|\nabla u|})โˆ‚uโˆ‚โ€‹F=ฮป(uโˆ’u0โ€‹)โˆ‚uxโ€‹โˆ‚โ€‹F=โˆฃโˆ‡uโˆฃโˆ‚xโˆ‚uโ€‹โ€‹โˆ‚uyโ€‹โˆ‚โ€‹F=โˆฃโˆ‡uโˆฃโˆ‚yโˆ‚uโ€‹โ€‹divF=โˆ‡โ‹…F=โˆ‚xโˆ‚โ€‹Fxโ€‹+โˆ‚yโˆ‚โ€‹Fyโ€‹=โˆ‡โ‹…(โˆฃโˆ‡uโˆฃโˆ‡uโ€‹)
ฮป(uโˆ’u0)โˆ’โˆ‡โ‹…(โˆ‡uโˆฃโˆ‡uโˆฃ)=0\lambda(u-u_0)-\nabla\cdot\left(\dfrac{\nabla u}{|\nabla u|}\right)=0ฮป(uโˆ’u0โ€‹)โˆ’โˆ‡โ‹…(โˆฃโˆ‡uโˆฃโˆ‡uโ€‹)=0
โˆฅxโˆฅ1=โˆ‘i=1nโˆฃxiโˆฃ\|\mathbf{x}\|_1=\sum_{i=1}^{n}|x_i|โˆฅxโˆฅ1โ€‹=i=1โˆ‘nโ€‹โˆฃxiโ€‹โˆฃ
SAD(x1,x2)=โˆ‘inโˆฃx1iโˆ’x2iโˆฃSAD(x_1,x_2)=\sum_i^n|x_{1i}-x_{2i}|SAD(x1โ€‹,x2โ€‹)=iโˆ‘nโ€‹โˆฃx1iโ€‹โˆ’x2iโ€‹โˆฃ
minโˆฅxโˆฅ1s.t.Ax=bmin\|\mathbf{x}\|_1 \\ s.t.Ax=bminโˆฅxโˆฅ1โ€‹s.t.Ax=b
โˆ‚uโˆ‚t=โˆ’ๆฌงๆ‹‰ๆ–น็จ‹โˆ‚uโˆ‚t=โˆ‡โ‹…(โˆ‡uโˆฃโˆ‡uโˆฃ)โˆ’ฮป(uโˆ’u0)โˆ‡โ‹…(โˆ‡uโˆฃโˆ‡uโˆฃ)=div(โˆ‡uโˆฃโˆ‡uโˆฃ)=โˆ‚โˆ‚x(uxux2+uy2)+โˆ‚โˆ‚y(uyux2+uy2)โˆ‡โ‹…(โˆ‡uโˆฃโˆ‡uโˆฃ)=ux2uyy+uxxuy2โˆ’2uxuyuxyโˆฃโˆ‡uโˆฃ3\dfrac{\partial u}{\partial t}=-\mathbb{ๆฌงๆ‹‰ๆ–น็จ‹} \\ \dfrac{\partial u}{\partial t}=\nabla\cdot\left(\dfrac{\nabla u}{|\nabla u|}\right)-\lambda(u-u_0) \\ \nabla\cdot\left(\dfrac{\nabla u}{\lvert\nabla u\rvert}\right)=div\left(\dfrac{{\nabla u}}{\lvert{\nabla u\rvert}}\right)=\dfrac{\partial}{\partial x}\left(\dfrac{u_x}{\sqrt{{u_x}^2+{u_y}^2}}\right)+\dfrac{\partial}{{\partial y}}(\dfrac{{u_y}}{{\sqrt{{u_{x}}^2+{u_y}}^2}}) \\ \nabla\cdot\left(\frac{\nabla u}{|\nabla u|}\right)=\frac{{u_x}^2u_{yy}+u_{xx}{u_y}^2-2u_xu_y u_{xy}}{|\nabla u|^3}โˆ‚tโˆ‚uโ€‹=โˆ’ๆฌงๆ‹‰ๆ–น็จ‹โˆ‚tโˆ‚uโ€‹=โˆ‡โ‹…(โˆฃโˆ‡uโˆฃโˆ‡uโ€‹)โˆ’ฮป(uโˆ’u0โ€‹)โˆ‡โ‹…(โˆฃโˆ‡uโˆฃโˆ‡uโ€‹)=div(โˆฃโˆ‡uโˆฃโˆ‡uโ€‹)=โˆ‚xโˆ‚โ€‹(uxโ€‹2+uyโ€‹2โ€‹uxโ€‹โ€‹)+โˆ‚yโˆ‚โ€‹(uxโ€‹2+uyโ€‹โ€‹2uyโ€‹โ€‹)โˆ‡โ‹…(โˆฃโˆ‡uโˆฃโˆ‡uโ€‹)=โˆฃโˆ‡uโˆฃ3uxโ€‹2uyyโ€‹+uxxโ€‹uyโ€‹2โˆ’2uxโ€‹uyโ€‹uxyโ€‹โ€‹
ui,jn+1=ui,jnโˆ’ฮ”tฮป(ui,jnโˆ’u0(i,j))+ฮ”t(โˆ‡โ‹…โˆ‡ui,jnโˆฃโˆ‡ui,jnโˆฃ)u^{n+1}_{i,j}=u^{n}_{i,j}-\Delta t\lambda\Big(u^n_{i,j}-u_0(i,j)\Big)+\Delta t(\nabla\cdot\dfrac{\nabla u^n_{i,j}}{\big|\nabla u^{n}_{i,j}\big|})ui,jn+1โ€‹=ui,jnโ€‹โˆ’ฮ”tฮป(ui,jnโ€‹โˆ’u0โ€‹(i,j))+ฮ”t(โˆ‡โ‹…โ€‹โˆ‡ui,jnโ€‹โ€‹โˆ‡ui,jnโ€‹โ€‹)
(ux)i,jn=ui+1,jnโˆ’uiโˆ’1,jn2(uy)i,jn=ui,j+1nโˆ’ui,jโˆ’1n2(uxx)i,jn=ui+1,jnโˆ’uiโˆ’1,jnโˆ’2ui,jn(uyy)i,jn=ui,j+1nโˆ’ui,jโˆ’1nโˆ’2ui,jn(uxy)i,jn=(uxy)i,jn=ui+1,j+1n+uiโˆ’1,jโˆ’1nโˆ’uiโˆ’1,j+1nโˆ’ui+1,jโˆ’1n4\begin{array}{c} \left(u_{x}\right)_{i, j}^{n}=\frac{u_{i+1, j}^{n}-u_{i-1, j}^{n}}{2} \\ \left(u_{y}\right)_{i, j}^{n}=\frac{u_{i, j+1}^{n}-u_{i, j-1}^{n}}{2} \\ \left(u_{x x}\right)_{i, j}^{n}=u_{i+1, j}^{n}-u_{i-1, j}^{n}-2 u_{i, j}^{n} \\ \left(u_{y y}\right)_{i, j}^{n}=u_{i, j+1}^{n}-u_{i, j-1}^{n}-2 u_{i, j}^{n} \\ \left(u_{x y}\right)_{i, j}^{n}=\left(u_{x y}\right)_{i, j}^{n}=\frac{u_{i+1, j+1}^{n}+u_{i-1, j-1}^{n}-u_{i-1, j+1}^{n}-u_{i+1, j-1}^{n}}{4} \end{array}(uxโ€‹)i,jnโ€‹=2ui+1,jnโ€‹โˆ’uiโˆ’1,jnโ€‹โ€‹(uyโ€‹)i,jnโ€‹=2ui,j+1nโ€‹โˆ’ui,jโˆ’1nโ€‹โ€‹(uxxโ€‹)i,jnโ€‹=ui+1,jnโ€‹โˆ’uiโˆ’1,jnโ€‹โˆ’2ui,jnโ€‹(uyyโ€‹)i,jnโ€‹=ui,j+1nโ€‹โˆ’ui,jโˆ’1nโ€‹โˆ’2ui,jnโ€‹(uxyโ€‹)i,jnโ€‹=(uxyโ€‹)i,jnโ€‹=4ui+1,j+1nโ€‹+uiโˆ’1,jโˆ’1nโ€‹โˆ’uiโˆ’1,j+1nโ€‹โˆ’ui+1,jโˆ’1nโ€‹โ€‹โ€‹

TVๅŽปๅ™ช็š„็†่งฃ_ๆ‰“็€็ฏ็ฌผๆ‘ธ้ป‘็š„ๅšๅฎข-CSDNๅšๅฎข
ไปŽๆฌงๆ‹‰-ๆ‹‰ๆ ผๆœ—ๆ—ฅๆ–น็จ‹ๅˆฐ็†่ฎบๅŠ›ๅญฆๅ’Œๅ…จๅ˜ๅˆ†็บฆๆŸ้™ๅ™ช - ็ŸฅไนŽ (zhihu.com)